DOT1L Inhibition Sensitizes MLL-Rearranged AML to Chemotherapy

نویسندگان

  • Wei Liu
  • Lisheng Deng
  • Yongcheng Song
  • Michele Redell
چکیده

DOT1L, the only known histone H3-lysine 79 (H3K79) methyltransferase, has been shown to be essential for the survival and proliferation of mixed-linkage leukemia (MLL) gene rearranged leukemia cells, which are often resistant to conventional chemotherapeutic agents. To study the functions of DOT1L in MLL-rearranged leukemia, SYC-522, a potent inhibitor of DOT1L developed in our laboratory, was used to treat MLL-rearranged leukemia cell lines and patient samples. SYC-522 significantly inhibited methylation at H3K79, but not H3K4 or H3K27, and decreased the expression of two important leukemia-relevant genes, HOXA9 and MEIS1, by more than 50%. It also significantly reduced the expression of CCND1 and BCL2L1, which are important regulators of cell cycle and anti-apoptotic signaling pathways. Exposure of MLL-rearranged leukemia cells to this compound caused cell cycle arrest and promoted differentiation of those cells, both morphologically and by increased CD14 expression. SYC-522 did not induce apoptosis, even at 10 µM for as long as 6 days. However, treatment with this DOT1L inhibitor decreased the colony formation ability of primary MLL-rearranged AML cells by up to 50%, and promoted monocytic differentiation. Notably, SYC-522 treatment significantly increased the sensitivity of MLL-rearranged leukemia cells to chemotherapeutics, such as mitoxantrone, etoposide and cytarabine. A similar sensitization was seen with primary MLL-rearranged AML cells. SYC-522 did not affect chemotherapy-induced apoptosis in leukemia cells without MLL-rearrangement. Suppression of DOT1L activity inhibited the mitoxantrone-induced increase in the DNA damage response marker, γH2AX, and increased the level of cPARP, an intracellular marker of apoptosis. These results demonstrated that SYC-522 selectively inhibited DOT1L, and thereby altered gene expression, promoted differentiation, and increased chemosensitivity by preventing DNA damage response. Therefore, inhibition of DOT1L, in combination with DNA damaging chemotherapy, represents a promising approach to improving outcomes for MLL-rearranged leukemia.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MLL partial tandem duplication leukemia cells are sensitive to small molecule DOT1L inhibition.

Genetic alterations of the mixed-lineage leukemia (MLL) gene are commonly implicated in the development of acute leukemias. In acute myeloid leukemia (AML) a partial tandem duplication (PTD) of MLL occurs in about 5%-11% of patients and has been linked to poor treatment outcome. Although recent studies show that MLL-PTD does not have a prognostic impact in CN-AML patients treated with intensive...

متن کامل

Histone H2B ubiquitin ligase RNF20 is required for MLL-rearranged leukemia.

Mixed-lineage leukemia (MLL) fusions are potent oncogenes that initiate aggressive forms of acute leukemia. As aberrant transcriptional regulators, MLL-fusion proteins alter gene expression in hematopoietic cells through interactions with the histone H3 lysine 79 (H3K79) methyltransferase DOT1L. Notably, interference with MLL-fusion cofactors like DOT1L is an emerging therapeutic strategy in th...

متن کامل

Cooperative gene activation by AF4 and DOT1L drives MLL-rearranged leukemia.

The eleven-nineteen leukemia (ENL) protein family, composed of ENL and AF9, is a common component of 3 transcriptional modulators: AF4-ENL-P-TEFb complex (AEP), DOT1L-AF10-ENL complex (referred to as the DOT1L complex) and polycomb-repressive complex 1 (PRC1). Each complex associates with chromatin via distinct mechanisms, conferring different transcriptional properties including activation, ma...

متن کامل

Pharmacological inhibition of LSD1 for the treatment of MLL-rearranged leukemia.

BACKGROUND Mixed lineage leukemia (MLL) gene translocations are found in ~75% infant and 10% adult acute leukemia, showing a poor prognosis. Lysine-specific demethylase 1 (LSD1) has recently been implicated to be a drug target for this subtype of leukemia. More studies using potent LSD1 inhibitors against MLL-rearranged leukemia are needed. METHODS LSD1 inhibitors were examined for their bioc...

متن کامل

Potent inhibition of DOT1L as treatment of MLL-fusion leukemia.

Rearrangements of the MLL gene define a genetically distinct subset of acute leukemias with poor prognosis. Current treatment options are of limited effectiveness; thus, there is a pressing need for new therapies for this disease. Genetic and small molecule inhibitor studies have demonstrated that the histone methyltransferase DOT1L is required for the development and maintenance of MLL-rearran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014